Master Internship - Generative ai For Vibration Signals H/F - INRIA
- Gif-sur-Yvette - 91
- Stage
- INRIA
Les missions du poste
A propos d'Inria
Inria est l'institut national de recherche dédié aux sciences et technologies du numérique. Il emploie 2600 personnes. Ses 215 équipes-projets agiles, en général communes avec des partenaires académiques, impliquent plus de 3900 scientifiques pour relever les défis du numérique, souvent à l'interface d'autres disciplines. L'institut fait appel à de nombreux talents dans plus d'une quarantaine de métiers différents. 900 personnels d'appui à la recherche et à l'innovation contribuent à faire émerger et grandir des projets scientifiques ou entrepreneuriaux qui impactent le monde. Inria travaille avec de nombreuses entreprises et a accompagné la création de plus de 200 start-up. L'institut s'eorce ainsi de répondre aux enjeux de la transformation numérique de la science, de la société et de l'économie.Master Internship - Generative AI for vibration signals
Le descriptif de l'offre ci-dessous est en Anglais
Type de contrat : Stage
Niveau de diplôme exigé : Bac +5 ou équivalent
Fonction : Stagiaire de la recherche
Niveau d'expérience souhaité : Jeune diplômé
A propos du centre ou de la direction fonctionnelle
The Inria Saclay-Île-de-France Research Centre was established in 2008. It has developed as part of the Saclay site in partnership with Paris-Saclay University and with the Institut Polytechnique de Paris .
The centre has , 27 of which operate jointly with Paris-Saclay University (15 teams) and the Institut Polytechnique de Paris (12 teams). Its activities occupy over 600 people, scientists and research and innovation support staff, including 44 different nationalities.
The centre also hosts the , dedicated to data sciences and their disciplinary and application interfaces.
Contexte et atouts du poste
In the context of a collaborativeproject between Inria Saclay OPIS and SafranTech, the aim of this internship is to investigate generative AI techniques for non-stationary vibration signals, such as those encountereed in aircraft rotor monitoring.
Subject: Recent advances in generative artificial intelligence (AI) have shown remarkable success in the image domain, particularly for high-resolution methods such as diffusion models, flow models, and GANs [1,2]. In this internship, weinvestigateAI generative techniques to handle non-stationary signals,aiming todevelopan AI model for super-resolution of time-frequency (TF) representations.
During this internship, the student will conduct a literature review on TF super-resolution [3], including optimization-based, discriminative, and generative methods. They will implement aAI-basedTF super-resolution algorithm, evaluate it on synthetic datasets, and explore potentialreal-world datasets for application.
The research conducted during this project has the potential to result in a publication in leading conferences on artificial intelligence or signal processing.
[1]Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gener-
ative adversarial networks, 2014.
[2]SégolèneMartin, Anne Gagneux, Paul Hagemann, and Gabriele Steidl.
Pnp-flow: Plug-and-play image restoration with flow matching, 2025.
[3]Vasile V Moca, Harald Barzan, Adriana Nagy-Dabacan, and Raul C
Mures. Time-frequency super-resolution with superlets. Nature com-
munications, 12(1):337, 2021.
Mission confiée
Missions:Literature review; Implementation ; Evaluation on public datasets
Environment: The intern will be supervised by Emilie Chouzenoux (Head of OPIS team, Inria Saclay) andImed Moussa (PhD student, OPIS-SafranTech). The intern student will join the Inria Saclay team OPIS (https://opis-inria.eu/). He/she will be located in the Centre de la Vision Numérique, in CentraleSupélec campus, Saclay, France. He/she will enjoy an international and creative environment where research seminars and reading groups take place very often. Informatic material expenses will be covered within the limits of the scale in force.
Organization: The proposed offer is dedicated to internship of Master 2 students. The starting/end dates
are flexible, with a minimum duration of 5 months.
Principales activités
Main activities:
Programming in Python environment
Bibliographical study
Deep learning architecture design
Scientific meetings
Deep learning training/testing
Writing of scientific reports
Compétences
Languages : The candidate must be fluent in english and/or french languages.
Avantages
- Canteen and cafeteria;
- Sports equipment;
- Transport reimbursement
Rémunération
Gratification